热线电话
  • 010-88558925010-88558943
  • 010-88558955010-88558948
CMIC专家更多

中国半导体行业协会副

3月21日,SEMI产业创新投资论坛在上...更多>>

赛迪研究院未来产业研

近日,工业和信息化部、科技部、交通运输部...更多>>

中国市场情报中心 > CMIC研究 > CMIC观点
CMIC:中国区块链演进及投资价值之产业链全景

发布时间:2017-01-11 09:42:22

来源:赛迪顾问

作者:

【打印】 【进入博客】 【推荐给朋友】

    全球经济体普遍把加快信息技术创新、最大程度释放数字红利,作为应对“后金融危机”时代增长不稳定性和不确定性、深化结构性改革和推动可持续发展的关键引擎。国务院日前印发了《“十三五”国家信息化规划》,《规划》中提到,到2020年,“数字中国”建设取得显著成效,信息化能力跻身国际前列,其中区块链技术首次被列入了《国家信息化规划》。对此赛迪顾问对区块链产业链做了进一步分析。
 
    (一)产业链全景图
 
    赛迪顾问认为区块链产业链主要包括基础网络层、中间协议层以及应用服务层。
 
    基础网络层由数据层、网络层组成,其中数据层包括了底层数据区块以及相关的数据加密和时间戳等技术;网络层则包括分布式组网机制、数据传播机制和数据验证机制等。
 
    中间协议层由共识层、激励层、合约层组成,其中共识层主要包括网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要包括各类脚本、算法和智能合约,是区块链可编程特性的基础。
 
    应用服务层作为区块链产业链中最重要的环节,则包括区块链的各种应用场景和案例,包括可编程货币、可编程金融和可编程社会。

图

 

    (二)主要环节分析
 
    1、基础网络层是区块链系统的技术支撑
 
    (1)数据层:设计账本的数据结构
 
    1)数据区块
 
    区块(block)包含数据库中实际需要保存的数据,这些数据通过区块包装组织起来被写入数据库。数据通过称为区块的文件,永久记录在数字货币网络上。它们好比是一个股票交易账本。新的区块会被添加到记录(区块链)的末端,而且一旦书写就很难修改或移除。每个区块由区块头、区块主体组成。区块主体负责记录交易信息,它包含一段时间内所有交易信息,区块头用以实现区块链的其他功能。
 
    2)链式结构
 
    每个区块的区块头中记录了其引用的父区块的哈希值,通过这种方式形成了前后区块的链式关系。以比特币为例,区块链中记录的是交易信息,每个节点都在本地保存有一份完整的区块链,每个完整的区块链中都记录了从2009年比特币诞生之日起发生的所有交易信息,每当有一个新交易申请产生时,节点都可以通过完整区块链验证这笔新交易的正确性,被验证通过的交易会被记录到下一个将要生成的新区块中。
 
    3)哈希函数
 
    哈希函数将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。一般来说哈希函数满足这样的关系:f(data)=key,输入任意长度的data数据,经过哈希算法处理后输出一个定长的数据key。这种转换是一种压缩映射,也就是说,哈希值的空间通常远小于输入的空间,是一段数据唯一且极其紧凑的数值表示形式。哪怕一段数据只有很细微的改变,随后的哈希函数都将产生不同的哈希值。要找到哈希值相同的两个不同的输入,在计算上是不可能的。
 
    4)Merkle树
 
    Merkle树是一种数据编码的结构。在最底层,我们把交易信息数据分成小的数据块,有相应的哈希值和它对应。但是往上走,并不是直接去运算根哈希值,而是把相邻的两个哈希值合并成一个字符串,然后运算得到这个字符串的哈希值,这样每两个哈希值就结婚生子,得到了一个“子哈希值”。
 
    依次往上推,可以得到数目更少的新一级哈希,最终必然形成一棵倒挂的树,到了树根的这个位置,这一代就剩下唯一的根哈希值,我们把它叫做Merkle根。目前在计算机领域,Merkle树大多用来进行比对以及验证处理。
 
    5)非对称加密
 
    非对称加密算法是一种密钥的保密方法。非对称加密算法需要两个密钥:公钥和私钥。公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密,从而获取对应的数据价值;如果用私钥对数据进行签名,那么只有用对应的公钥才能验证签名,验证信息的发出者是私钥持有者。因为加密和解密使用的是两个不同的密钥,所以这种算法叫做非对称加密算法,而对称加密在加密与解密的过程中使用的是同一把密钥。
 
    (2)网络层:实现记账节点的去中心化
 
    对等网络(peer-to-peer,P2P),又称点对点技术,是没有中心服务器、依靠用户群交换信息的互联网体系。与有中心服务器的中央网络系统不同,对等网络的每个用户端既是一个节点,也有服务器的功能。
 
    其具有去中心化与健壮性等特点。1)去中心化:网络中的资源和服务分散在所有结点上,信息的传输和服务的实现都直接在结点之间进行,可以无需中间环节和服务器的介入。2)健壮性:P2P架构天生具有耐攻击、高容错的优点。由于服务是分散在各个结点之间进行的,部分结点或网络遭到破坏对其它部分的影响很小。
 
    2、中间协议层是连接应用和网络的桥梁
 
    (1)共识层:调配记账节点的任务负载
 
    1)工作量证明机制(Proof of Work,POW)
 
    工作量证明机制挑选能够计算出一个满足规则的随机数的节点,赋予其新区块产生时的记账权。通俗地说,节点获得多少货币,取决于其挖矿贡献的有效工作。也就是说,节点的电脑性能越好,计算出随机数的可能性越大,获得创建新区块权利的可能性越大,分给该节点的矿就会越多,这就是根据节点的工作证明来执行货币的分配。
 
    2)股权证明机制(Proof of Stake,POS)
 
    股权证明机制已有很多不同变种,但基本概念是获得对新区块记账权利的可能性与该节点在网络里所占的股权(所有权占比)成比例,等比例地降低挖矿难度。
 
    3)授权股权证明机制(Delegate Proof of Stake,DPOS)
 
    授权股权证明机制的理念是每个节点可以将其投票权授予一名代表,获票数最多的前100位代表按既定时间表轮流记录产生的区块。每名代表分配到一个时间段来生产区块,所有的代表将收到等同于一个平均水平的区块所含交易费的1%作为报酬。如果代表不能履行他们的职责会被除名,网络会选出新的超级节点来取代他们。
 
    (2)激励层:制定记账节点的“薪酬体系”
 
    发行机制和激励机制:以比特币为例
 
    比特币最开始由系统奖励给那些创建新区块的矿工,该奖励大约每四年减半。刚开始每记录一个新区块,奖励矿工50个比特币,该奖励大约每四年减半。依次类推,到公元2140年左右,新创建区块就没有系统所给予的奖励了。届时比特币全量约为2100万个,这就是比特币的总量,所以不会无限增加下去。
 
    另外一个激励的来源则是交易费。新创建区块没有系统的奖励时,矿工的收益会由系统奖励变为收取交易手续费。例如,你在转账时可以指定其中1%作为手续费支付给记录区块的矿工。如果某笔交易的输出值小于输入值,那么差额就是交易费,该交易费将被增加到该区块的激励中。只要既定数量的电子货币已经进入流通,那么激励机制就可以逐渐转换为完全依靠交易费,那么就不必再发行新的货币。
 
    (3)合约层:赋予账本可编程的特性
 
    智能合约是一组情景应对型的程序化规则和逻辑,是通过部署在区块链上的去中心化、可信共享的脚本代码实现的。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。
 
    3、应用服务层是获得持续发展动力所在
 
    (1)可编程货币:区块链1.0应用
 
    可编程货币既数字货币,其不同于电子货币,是一种价值的数据表现形式,通过数据交易并发挥交易媒介、记账单位及价值存储的功能,但它并不是任何国家和地区的法定货币,也没有政府当局为它提供担保,只能通过使用者间的协议来发挥上述功能。而电子货币是将法定货币数字化后以支撑法定货币的电子化交易,因此二者并不等同。目前数字货币的主流是以比特币为代表的去中心化的数字货币。
 
    (2)可编程金融:区块链2.0应用
 
    可编程金融应用是指区块链在泛金融领域的众多应用。基于区块链可编程的特点,人们尝试将智能合约添加到区块链系统中,形成可编程金融。智能合约的核心是利用程序算法替代人执行合同。这些合约需要自动化的资产、过程、系统的组合与相互协调。合约包含三个基本的要素:要约、承诺、价值交换,并有效定义了新的应用形式,使得区块链从最初的货币体系拓展到金融的其他应用领域,包括在股权众筹、证券交易等领域开始逐渐有应用落地。
 
    (3)可编程社会:区块链3.0应用
 
    可编程社会应用是指随着区块链技术的发展,其应用能够扩展到任何有需求的领域,包括审计公证、医疗、投票、物流等领域,进而到整个社会。区块链是价值互联网的内核,能够对于每一个互联网中代表价值的信息和字节进行产权确认、计量和存储。价值互联网的核心是由区块链构造一个全球性的分布式记账系统,它不仅仅能够记录金融业的交易,而是几乎可以记录任何有价值的能以代码形式进行表达的事物。
 
    (三)难点和突破点
 
    赛迪顾问认为,区块链目前仍然处于发展的早期,还有着诸多潜在的制约因素。从目前区块链产业链的总体发展情况来看,中间协议层发展相对成熟,而基础网络层和应用服务层还都存在很多有待解决的问题。尤其应用服务层的不成熟是制约区块链发展的最重要因素,一旦区块链的应用服务获得突破式的进展,那么必将带来区块链产业和市场的爆发式发展,但目前来看,这个过程仍然需要3-5年左右的时间。
 
    1、区块链的基础技术仍然有待改善
 
    区块链技术想要全面应用于现实社会中,关键是要解决高耗能、数据存储空间及大规模交易处理等问题。
 
    (1)高耗能问题
 
    区块链技术成功解决了去中心化与安全问题,但却带来了“高能耗”的问题。要维持区块链数据的安全性与可靠性,就必须保证全球多个节点同时参与记账,多个节点的数据共享过程实际上也是一个高耗能的过程。技术的应用要考虑其系统的整体性,也许区块链技术的应用过程就是一个权衡成本收益后让技术效用最大化的过程。
 
    (2)数据库存储空间问题
 
    区块链数据的存储空间容量要求成为一个制约其发展的关键问题。区块链数据库记录了从创建开始发生的每一笔交易,每一个参与进来的节点都必须下载存储并实时更新一份从创世块开始延续至今的数据包,这造成区块链对存储空间容量要求非常高。
 
    目前市场中提出了两种解决方法:一是创建一个“轻数据库”供非专业使用节点下载,这些轻数据库剔除了早期的无意义交易数据,为整个数据包减负;二是互联网世界的存储技术也在高速发展,也许存储技术的发展会让数据库存储空间问题变得无足轻重。
 
    (3)处理大规模交易的抗压能力问题
 
    一旦将区块链技术推广到大规模交易环境下,区块链记录数据的抗压能力就无法得到保证。目前的区块链技术还没有真正处理过全世界所有人都共同参与进来的大规模交易,目前已投入使用的区块链系统中的节点总数规模仍然很小。以应用最多的比特币区块链系统为例,该系统的理论交易处理速度峰值为每秒7笔,而VISA网络处理峰值约为10000笔/秒。
 
    对于区块链的交易处理速度问题,市场中目前有两种解决办法:一是通过技术创新(如“超导交易”、清算型区块链等)加快区块链处理交易的速度;二是寄希望于区块链技术的摩尔定律能成立,区块链的可扩展性能得到加强。
 
    综上所述,赛迪顾问认为,区块链在技术层面依然存在很多问题,只有针对这些问题进行重点突破,才能使得区块链走出小众应用,真正实现大规模的普及发展。随着人们对区块链技术优势的认识越来越深刻,越来越多的资本、人才、资源不断的被投入到相关研究中,相关技术水平会不断进步,区块链的上述技术缺陷得到解决相信只是时间问题。
 
    2、区块链在应用层面依然不够成熟
 
    赛迪顾问认为区块链在应用层面仍然需要3-5年的时间来进行技术演进和经验积累。区块链的应用分成三个阶段:第一阶段是理论探讨阶段;第二阶段业务测试阶段;第三阶段是大规模应用阶段,区块链真正走到生产系统中去。目前除了数字货币处在第三阶段,其他大部分应用都处于第一和第二阶段,区块链在相关领域的应用仍需要3-5年的时间让人们去接受和认可,最终才能步入第三阶段,实现大规模应用和快速发展。目前区块链的应用种类和领域也相对较少,未来还存在着更加广阔的想象和发展空间。

图

 

    3、区块链在监管方面存在较大风险
 
    区块链的迅速发展对未来监管提出新要求。一方面,区块链去中心、自治的特性淡化了国家、监管等概念,对现行体制带来了深刻冲击。另一方面,监管部门对区块链这项新技术也缺乏充分的认识和预期,法律和制度建立可能会十分滞后,导致与运用区块链相关的经济活动缺乏必要的制度规范和法律保护,无形中增大了市场主体的风险。
 
    因此,赛迪顾问认为,区块链的发展受监管的影响很大。以比特币为例,中国央行于2013年12月5日就发布了《关于防范比特币风险的通知》,央行在这一通知中称比特币不是货币,只是一种虚拟商品,金融机构和支付机构不得开展与比特币相关的业务。作为一门新技术,区块链的监管体系还尚未建立,但预计其监管体系将会在3年左右较为成熟。

责任编辑:拂晓晨风

相关报道
  • --

联系我们:8610-8855 8955 zhouhl@staff.ccidnet.com

广告发布: 8610-88558925

方案、案例展示: 8610-88558925

Copyright 2000-2011 CCIDnet.All rights reserved.

京ICP000080号 网站-3